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Nonequilibrium molecular dynamics is used to calculate the spectrum of 
shear viscosity for a Lennard-Jones fluid. The calculated zero-frequency 
shear viscosity agrees well with experimental argon results for the two 
state points considered. The low-frequency behavior of shear viscosity is 
dominated by an o) 1f2 cusp. Analysis of the form of this cusp reveals that 
the stress-stress time correlation function exhibits a t -aI2 "long-time tail." 
It is shown that for the state points studied, the amplitude of this long- 
time tail is between 12 and 150 times larger than what has been predicted 
theoretically. If the low-frequency results are truly asymptotic, they imply 
that the cross and potential contributions to the Kubo-Green integrand 
for shear viscosity exhibit a t -3/2 long-time tail. This result contradicts 
the established theory of such processes. 

KEY WORDS: Molecular dynamics; nonequilibrium; shear viscosity; 
frequency dependent. 

1. I N T R O D U C T I O N  

The discovery o f  long- t ime tails  in the K u b o - G r e e n  t ime corre la t ion  func- 
t ions is o f  fundamenta l  impor tance  to nonequi l ib r ium stat is t ical  mechanics.  
This is under l ined  by  their  connec t ion  with the divergence o f  virial  expan-  
sions for  the t r anspor t  coefficients and  the fact  tha t  their  fo rm calls into 
quest ion the very existence o f  Nav ie r -S tokes  hydrodynamics  in two dimen-  
sions and  Burnet t  hydrodynamics  in three dimensions.  (1~ 

In  spite o f  the impor tance  o f  long- t ime tails, exper imenta l  evidence for  
their  existence is a lmos t  nonexistent .  (2) The mos t  graphic  evidence for  the 
slow decay o f  the K u b o - G r e e n  in tegrands  for  the hyd rodyna mic  t r anspor t  

1 Ion Diffusion Unit, Research School of Physical Sciences, Australian National Univer- 
sity, Canberra, Australia. 

81 

0022-4715/80/0100-0081503.00/0 �9 1980 Plenum Publishing Corporation 



82 Denis J. Evans 

coefficients is still from computer simulation. It is well known that computer 
simulation evidence is consistent with a t -  3~2 long-time decay for the velocity 
autocorrelation function in three-dimensional systems. (3~ The calculated 
coefficient has been shown to agree with theoretical predictions for both 
hard-sphere (a~ and Lennard-Jones systems. (5~ 

As soon as we consider transport coefficients other than the diffusion 
coefficient, the computer evidence itself becomes much weaker. For shear 
viscosity, apart from the previous paper in this series, (7~ there is no computer 
evidence for a t -3/2 long-time tail for any three-dimensional system. Our 
knowledge of the t-a~2 long-time tail for the stress-stress time correlation 
function rests upon the agreement of two-dimensional shear viscosity 
calculations with theory and the three-dimensional results for the velocity 
autocorrelation function. 

For  a two-dimensional system of hard disks Wainwright et  aI. (4~ have 
shown that, asymptotically, the stress-stress time correlation function has 
t -1 form and that the coefficient of the kinetic-kinetic contribution has a 
magnitude in agreement with theory. (2'~'6~ What is less well known is that 
Wainwright e t  al. (4~ also observed behavior consistent with a t -  1 long-time 
tail for the potential-potential and cross contributions to the time correlation 
function for the shear viscosity of hard disks. The consensus among theo- 
reticians seems to be that only the kinetic-kinetic terms contribute a t -a~2 
long-time tail for shear viscosity in a d-dimensional system. (2,4,6~ Indeed, 
Alder and Wainwright in their original explanation of the existence of long- 
time tails gave a theoretical argument for the fact that only kinetic-kinetic 
terms contribute such a tail for shear viscosity. (~ It is therefore assumed 
that the cross and potential terms must at times be beyond those accessible 
to the computer, and decay more rapidly than t -a~2. 

Intuitively this seems a little strange, since one usually expects that as 
times get longer, relaxation processes become slower. Computer evidence 
presented here suggests that at least for intermediate times, the potential 
and cross terms are decaying slowly ( - t -a /2 ) .  If theory is correct, then at 
longer times the decay of these terms must become more rapid than t-a/2. 
This prediction raises such questions as: what processes, which presumably 
last out to intermediate times, prevent the early rapid decay of the potential 
and cross terms ? 

In this paper we present evidence for the t-3~2 decay of the stress-stress 
time correlation function in a three-dimensional Lennard-Jones system. Our 
nonequilibrium molecular dynamics calculations are consistent with the 
t-a/2 decay of the potential and cross terms. Indeed, if those terms did not 
exhibit t-a/2 decay, then the amplitude of the kinetic-kinetic long-time tail 
is so small that we should never be able to see a t -a/2 dependence of the 
stress-stress correlation function using our computational technique. 
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2. M E T H O D  

Details of our algorithm for the calculation of  the complex frequency- 
dependent shear viscosity coefficient have been published previously. C7) 
Briefly, the method uses a modified form of the Ashurst-Hoover ~8~ homo- 
geneous shear algorithm. In the Ashurst and Hoover method oblique co- 
ordinate axes are used to allow the apparent motion of  periodic images to 
produce a steady homogeneous shear. The shear viscosity ~7 can then be 
calculated from the relation between stress Pxu, and strain rate Oux/Oy 

P ~  = - n  ~u~/ay ( l )  

The stress is calculated from the standard expression 

1 m[v, - n(xi)][vi - u(x~)] + E~ R,y ~Xo J (2) P=v 

where the summation is taken over atoms i within volume V and having 
mass, velocity, and position m, v~ and x~, respectively. It is assumed that the 
particles interact classically via a pair potential ~ j  which depends solely 
on their relative position R~ s = xj - x~. 

A very important property of this method is the empirically discovered 
independence of the calculated viscosity coefficient of  the size of the system 
simulated. <8,9) This is in marked contrast to equilibrium molecular dynamics, 
where not only must a larger number of  time steps be used, but also larger 
systems have to be studied to prevent spurious results occurring as a result 
of the so-called "sound kink. ''<1~ All the calculations described in this 
work used 108 particles. 

The major difference of  our technique from the Ashurst-Hoover scheme 
is the use of a least squares procedure at every time step adjust the velocity 
of every particle to that at the beginning of the next time step so that the 
strain rate is exactly linear and of  the required rate. <7> This is quite a neces- 
sary modification for the calculation of  a frequency-dependent shear vis- 
cosity. 

The frequency-dependent calculation follows along the lines of  the 
steady-state calculation except that a sinusoidal strain rate is used, 

~u=/~y = ~'o cos oJt = Re{70 e~t} (3) 

For the strain rates 70 used here the system responds linearly in that the pres- 
sure tensor exhibits a sinusoidal time dependence with the same frequency 
as (but in general with a different phase to) the imposed strain. One then 
calculates the complex frequency-dependent shear viscosity as one would 
calculate the impedance of  an electric circuit. 
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As has been shown in a previous paper, (7) this calculation is vastly more 
efficient than the corresponding Kubo-Green calculation, which calculates 
the frequency-dependent shear viscosity ~(o~) from the formula <11) 

r = ~ ( t ) e  ~~ dt  (4) 

where the Kubo-Green  integrand v(t) is given as an equilibrium stress- 
stress time correlation function <12) 

n ( t )  = ( 1 / l O k r V ) ( ~ ( O )  ~ : # ( t )  s) (5) 

where ]V = �89 + A r) - �89 tr(A)I. 
A nonequilibrium calculation begins with a 1000-timestep equilibra- 

tion from the crystal. Zero-frequency calculations are then performed to 
discover the variation of  effective viscosity with strain rate. (7'~ After identify- 
ing the " l inear"  region where the variation of  shear viscosity with strain 
rate is less than the statistical fluctuations in the calculated viscosity, the 
frequency-dependent calculations are begun. At a typical frequency we use 
~ 15,000 time steps, where the first two strain cycles are discarded. It typically 
takes two cycles for the pressure tensor to adjust to a steady sinusoidal 
pattern. 

The potential used in this work was the standard Lennard-Jones (12, 6) 
potential for argon, 

r = 4a[(a/r)  12 - (a/r6)] (6) 

with (~3) 

e l K  = 119.8 K, ~ = 3.405 A 

All results are stated in reduced units, where the reducing parameters are 
~, a, and the argon atomic weight m. 

Two state points were studied: 

1. T* = 0.85, p* = 0.76. 
2. T* = 2.28, p* = 0.679. 

The first state lies on the coexistence curve for the Lennard-Jones fluid, 
relatively close to the triple point. The second is a supercritical, dense fluid 
state. 

Table I summarizes the zero-frequency results for both state points. 
The zero-strain viscosities extrapolated using the Ree-Eyring formula <1~) 
should be accurate to ,~ 4~o. It can be seen that they are in good agreement 
with experiment. Recently Haynes <16~ has suggested that in the region of  
our high-pressure state, the Michels et  aL <15~ data may underestimate the 
viscosity coefficient by approximately 107o. 
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Table ! '~ 

T* p* y* ~* t.s. x 10 a A* 

0.85 0.76 0.0333 1.787 22 0.008 
0.85 0.76 0.0490 1.903 20 0.008 
0.85 0.76 0.0989 1.967 10 0.008 
0.85 0.76 0.1496 1.620 13 0.008 
0.85 0.76 0.2475 1.634 10 0.008 
0.85 0.76 0.4984 1.466 10 0.008 
0.85 0.76 0.0 1.90 + 0.05 b 
0.860 0.7608 0.0 1.92 c 
0.85 0.77 0.0 1.92 a 
2.28 0.679 0.1002 1.307 24 0.002 
2.28 0.679 0.1472 1.26 15 0.002 
2.28 0.679 0.2025 1.15 25 0.002 
2.28 0.679 0.2558 1.I 1 15 0.002 
2.28 0.679 0.2985 1.20 20 0.002 
2.28 0.679 0.4073 1.04 16 0.002 
2.28 O. 679 O. 6003 1.13 11 O. 002 
2.28 0.679 0.0 1.27 + 0.05 b 
2.28 0.679 0.0 1.14 e 

a Variables are reduced according to the Lennard-Jones parameters ~, e, 
and the argon atomic mass m. q~ = 4e[(e/r) 1 2 -  (e/r)61. T * =  kT/e, 
O* = 0 ~3, ~'* = ~'~(rn/e) l/a, 7/* = n~2(m~) 112, ~* = ~o~(rn/O 112, t* = 
t~- l (e lm) lt2. 

b Estimate at zero strain rate. 
c Hoover_Ashurst(a~ estimate at zero strain rate. 
a Experimental data. (~6~ 
e Experimental data from argon. (15~ 

A f t e r  d e t e r m i n i n g  the  s t ra in  ra te  7* a n d  the  t ime  step A* t h a t  y ie ld  

sa t i s fac to ry  z e r o - f r e q u e n c y  resul ts ,  the  s a m e  va lues  are  used  in the  f r e q u e n c y -  

d e p e n d e n t  ca lcu la t ions .  A t  ve ry  h igh  f r equenc ie s  (co* ~> 32) it  is necessa ry  

to  use  sho r t e r  t ime  steps so t h a t  the  f r e q u e n c y - d e p e n d e n t  ex te rna l  forces  do  

n o t  v a r y  a p p r e c i a b l y  w i t h i n  o n e  i n t e g r a t i o n  t i m e  step.  Per iod ica l ly ,  checks  

a re  m a d e  a t  n o n z e r o  f r equenc ies  t ha t  the  v a r i a t i o n  o f  the  f r e q u e n c y - d e p e n -  

d e n t  v i scos i ty  wi th  s t ra in  ra te  is still negl ig ible .  

3. R E S U L T S  

F i g u r e  1 shows  the  s p e c t r u m  o f  the  shea r  v iscos i ty  fo r  T*  = 0.85, 

p* = 0.76, g iv ing  the  real  a n d  i m a g i n a r y  par t s  ~R(co) a n d  ~r(co) as a f u n c t i o n  

o f  f r equency .  These  two  c o m p o n e n t s  a re  n o t  i n d e p e n d e n t  a n d  they  a re  
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Fig. 1. The real and imaginary components of the shear viscosity of argon as a function 
of frequency, x axis is co*; y axis is fi*(oJ*). The points denote the Kramers-Kronig 
transform of fiR(to). Here 7" = ne2(m~) 112, o~* = oJ~(m/E) 1/2. 

related by the Kramers-Kronig expression (17) 

~(to) = 2oJ f o~ ~.(co') do~' (7) 
~" Jo  ( o ; ) ~  - ,.,,~ 

Figure 1 also shows the Kramers-Kronig transform (7) of  f/n(co). The agree- 
ment of the directly calculated imaginary component and the Kramers-  
Kronig transform of  the real part is excellent, particularly at low frequencies. 
The difference of the two estimates for ~)i(co) gives an estimate of the numerical 
uncertainty of ~i(o)). The errors in the real component are thought to be 
roughly half those in 9~(w). 

We note that the Kramers-Kronig expression is an integral equation 
with a singular kernel. To avoid problems due to this singularity and due to 
the cusp in ~n(o)) at low frequencies, (7) was not used to calculate ~i(co) 
directly. A double Fourier transformation was used instead. This method 
can still produce difficulties in the second transformation from ~(t) to ~)i(~o). 
The reason for this is that the low-frequency cusp in ~n(m) leads naturally 
to a long-time tail in ~(t). This would necessitate a very large number of  
discretization points for the Fourier transformation. These difficulties were 
avoided by using an analytic form for the low-frequency cusp in ~R(o~). 
Only deviations in ~R(oJ) from this analytic form were transformed numeri- 
cally. ~/(t) was found as a sum of the numerically transformed deviations and 
the transform of the analytic part. The same splitting was used in the second 
transformation to obtain ~(w). 

This splitting procedure is indeed very easy since, for oJ* < 15, ~R(w) 
takes the form 

%(0 0 = %(0) - Ao~ 112 (8) 
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Fig. 2. Logarithmic plot of the low-frequency data from Fig. 1. The x axis is log o~*; 
the y axis is log[fiR*(0) - fiR*(oJ*)]. Here ,/* = ~a2(rn~) z12, co* = o~(rn/E) zJ2 

Figure 2 gives a logarithmic plot of  ~(0) - ~/~(o~) against frequency. I t  shows 
that  at low frequencies the data conform to (8) where c/R*(0)= 1.9 and 
A* = 0.315. This strong co ~12 cusp in 9(w) was first seen by Evans in an 
analogous calculation for methane37) 

The Taubernian theorems ~8~ imply 

A 
tlim ~/(t) = ~ t-8,2 (9) 

Thus we see that the coefficient of  the long-time tail for the stress-stress 
time correlation function of  a Lennard-Jones fluid at T* = 0.85, p* = 0.76 
is given by A*/(2rr) 1/2 = 0.126 + 0.042. For  the second state point, T* = 
2.28, p* = 0.679, we found very similar behavior. Again for reduced fre- 
quencies below 15, ~/R(~o) exhibited an co 112 cusp. In this case the amplitude 
of  the long-time tail is A*/(2,r) 1/2 = 0.0443 + 0.006. 

Recent mode coupling calculations of  Bosse et aL ~ )  have predicted a 
resonance in 9(o~) at twice the Einstein frequency for a Lennard-Jones fluid 
at the triple point. Apar t  f rom the oJ 1/2 cusp, we see very little structure; 
only a series of  poorly resolved plateaus and troughs (Fig. 1). This contrasts 
with our earlier calculations for methane ~7) and suggests that the resonance 
which was observed there was due to rotational rather than translational 
degrees of  freedom. The position of  the resonance in the methane calculation 
was ambiguous since the rotational and translational Einstein frequencies 
in methane at the state point studied are very close together. ~2~ 
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4 .  C O N C L U S I O N  

The theoretical expression for the long-time tail of the stress-stress time 
correlation function ~1'2'4-6~ is 

k T / 1  ] 8 / z ( 7  1 ) (10) 
~(t)-->-ff \8,~t] ~-~ + ~-~ 

where v is the kinematic viscosity and P is the acoustic damping coefficient. 
To the accuracy of  the present calculations the term involving P may be 
neglected. In Table II we compare the magnitude of the long-time tails 
calculated from computer simulation with Eq. (10). We include in Table II 
the results on ~7(t) from Levesque et al. ~22~ for a Lennard-Jones fluid at the 
triple point. Although Levesque et al. could not demonstrate that v(t) has 
the asymptotic t-8/2 form, they certainly saw a long-time tail in their equi- 
librium calculations. They characterized '7(0 by two exponentials. If  we 
assume that at their longest time ~7(t) is beginning to exhibit t -3/2 depen- 
dence, then we obtain the value shown in Table II for the long-time tail at 
the triple point. For  the state points considered here, (10) leads to values 
which are respectively 156 and 12 times smaller than the values calculated in 
our simulation! Furthermore, they have the opposite state dependence to 
that revealed in our calculations; our supercritical dense gas state has a 
weaker, rather than a stronger, long-time tail. 

The origin of this discrepancy is not difficult to find. The theoretical 
expression predicts that the t -a/2 long-time tail arises solely from kinetic- 
kinetic contributions to ~7(t) [see Eq. (5)]. I f  we write 

= Vk + V| (11) 

where 

p~,  = -~% aux/ay, P~, = -~7| 8ux/ay (12) 

and P~ and P* denote the kinetic and potential parts of  the pressure tensor, 
then for both state points considered here the results are completely domi- 
nated by P| If  we let c~ be the ratio of P to P~, then at the supercritical 

Table II a 

A*/(2~r) 112 A*/(2~r) ll2 
T* p* simulation Eq. (10) 

0.85 0.76 0.126 _+ 0.042 8.0 x 10 -4 
2.28 0.679 0.044 _+ 0.006 3.8 x 10 -a 
0.722 0.8442 0.672 4.0 • 10 -~ 

a , ~ *  = /~G112/n-119eSI4" 
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state ~ = 5.5 + 2 and for the other state ~ = 21.7 + 7. The relatively large 
errors in c~ arise because of the smallness of 7~ relative to 7, which we assume 
is known to ~3~ . At the triple point Ashurst and Hoover ~9~ have shown 
that ~ = 42. As far as is known to the author, no exact connection between 
7~, 7| and the analogous decomposition into kinetic-kinetic, cross, and 
potential-potential terms for the Kubo-Green integrands is known. Ashurst 
and Hoover have pointed out (2a~ that in the Enskog approximation the 
kinetic-kinetic and half the cross term comprise 7k and the potential- 
potential and half the cross term form 7.- Although this prediction may not 
be exact, it seems safe to assume from our results that even if all the kinetic- 
kinetic term decayed as t -aj2, its contribution to 7(t) is simply too small to 
explain our results. Our results therefore imply a long-time tail for the poten- 
tial and cross terms of the stress-stress time correlation function. Figure 2 
shows that the decay of these terms is consistent with a t -  3~2 dependence. 

Finally we must mention the fact that occasionally conjectures have been 
made about the accuracy of the Kubo-Green expressions for the hydro- 
dynamic transport coefficients. It has been suggested that the hydrodynamic 
transport coefficients are given by the Kubo-Green expressions minus the 
contribution from the t-3/2 long-time tail (see Refs. 22 and 24 for discussions 
of this point). We believe that our simulations have demonstrated that this 
conjecture is wrong. Nonequilibrium molecular dynamics closely mimics 
experiment, and as our frequency-dependent calculations show, the zero- 
frequency transport coefficients, which agree closely with experiment, do 
have contributions from an apparently t -3~2 long-time tail. 

N o t e  Added .  After this work was submitted for publication Wood 
and Erpenbeck sent us results of some new calculations of 7(t) for hard 
spheres obtained using equilibrium molecular dynamicsJ 26~ Their early re- 
sults seem to support the main points made by this paper. They find a t-a/2 
tail for both the cross and potential contributions to 7(t) and that the total 
t -al2 tail for 7(t) is approximately two orders of magnitude greater than 
theory predicts for the state point they studied. 

R E F E R E N C E S  

1. J. R. Dorfman and H. van Beijeren, The Kinetic Theory of Gases, in Statistical 
Mechanics, Part B, B. J. Berne, ed. (Plenum, 1977), p. 65. 

2. Y. Pomeau and P. Resibois, Physics Reports 19:63 (1975); see p. 126. 
3. B. J. Alder and T. E. Wainwright, Phys. Rev. A 1:18 (1970). 
4. T. E. Wainwright, B. J. Alder, and D. Gass, Phys. Rev. A 4:233 (1971). 
5. D. Levesque and W. T. Ashurst, Phys. Rev. Lett. 33:277 (1974). 
6. M. H. Ernst, E, H. Hauge, and J. M. J. Van Leeuwen, Phys. Rev. Lett. 25:1254 

(1970); J. Stat. Phys. 15:7 (1976). 
7. D. J. Evans, Molec. Phys. 37:1745 (1979). 



90 Denis J. Evans 

8. W. T. Ashurst and W. G. Hoover, in Theoretical Chemistry Advances and Perspec- 
tives, Vol. 1, H. Eyring and D. Henderson, eds. (Academic Press, 1975). 

9. W. T. Ashurst and W. G. Hoover, Sandia Report SAND 77-8614. 
10. B. J. Berne, Faraday Symposium 11:48 (1977). 
11. J. P. Hansen and I. R. McDonald, Theory of  Simple Liquids (Academic Press, 

1976). 
12. D. J. Evans and W. B. Streett, Molec. Phys. 36:161 (1978). 
13. L. Verlet, Phys. Rev. 159:98 (1967). 
14. F. H. Ree, T. Ree, and H. Eyring, lnd. Eng. Chem. 50:1036 (1958). 
15. A. Michels, A. Botzeau, and W. Schuurman, Physica 20:1141 (1955). 
16. W. M. Haynes, Physica 67:440 (1973). 
17. F. C. Brown, The Physics of  Solids (Benjamin, 1967), Appendix I. 
18. G. Doetsch, Guide to the Applications of  Laplace Transforms (Van Nostrand, 1961). 
19. J. Bosse, W. Gotze, and M. Lucke, Phys. Rev. A 17:434 (1978). 
20. S. Murad, D. J. Evans, K. E. Gubbins, W. B. Streett, and D. J. Tildersely, Molec. 

Phys. 37:725 (1979). 
21. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4:2055 (1971). 
22. D. Levesque, L. Verlet, and J. Kurkijarvi, Phys. Rev. A 7:1690 (1973). 
23. W. W. Wood, in The Boltzmann Equation, E. G. D. Cohen and W. Thirring, eds. 

(Springer-Verlag, 1973), p. 468. 
24. R. Zwanzig, in Statistical Mechanics, S. A. Rice, K. F. Freed, and J. C. Light, 

eds. (Chicago University Press, 1972), p. 241. 
25. W. T. Ashurst and W. G. Hoover, Phys. Rev. A 11:658 (1975). 
26. W. Wood, private communication. 


